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1 The line integral of a vector �eld

The work done by a force F when a body is following a trajectory C is
equal to the body's change in kinetic energy. This is the statement of the
work-energy theorem and it's the main reason why we're interested in the
work done by a force. If we have a constant force which is acting on a body
moving on a straight line segment d, then the work done is de�ned to be

W = F · d = |F||d| cos θ

where the dot-product conveniently picks out the component of the force in the direction along d. If we
have a varying force over a more complicated trajectory we divide the trajectory into ever smaller pieces
and compute the work done as an integral

W =

∫
C
F · dr

where dr here represents an in�nitesimal displacement along the curve C. This kind of integral is called
a line integral over a vector �eld F and the calculation of the work done by a force on a body who's
trajectory is C is only one of it's applications. More generally, since the dot product always picks out
the component of F along dr, it can be thought of as a measure of how much F is going in the direction
of C.

2 Computation

In electromagnetic theory we'll mainly be interested in computing integrals over closed curves and later
we'll see that such integrals can be evaluated via an important theorem called Stokes' Theorem. However
this isn't always the easiest method so we'll go trough some of the theory of direct computation here.
In some easy cases we can use geometric considerations to compute such integrals without doing much
calculation, but in the general case we need to parametrize our curve C by expressing each of our
coordinates as a function of some parameter t. Supposed that we have expressed each of our coordinates
as a function of t such that r = r(t) for a ≤ t ≤ b, then an in�nitesimal segment dr can be expressed as

dr = r′(t)dt

and the �eld F along the path C can be expressed as F = F(r(t)) then this integral will turn out as an
integral just over t such that
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Figure 1: The work from a varying force is found by chopping the trajectory C in to tiny segments and summing

up the contributions from each segment.

∫
C
F · dr =

∫ b

a

F(r(t)) · r′(t)dt.

It's generally up to you to chose what parameter to use whether it's an angle, time or maybe one of the
coordinates. The line integral will be independent of the parametrization of the curve C.

2.1 Example

Figure 2: A sketch of the �eld F = −ŷi + x̂j projected
onto the xy-plane.

Find the line integral of F = −ŷi + x̂j around a
unit circle C centered at the origin in the xy-plane
oriented counter clockwise. A sketch of the �eld is
shown in Figure 2. Geometrically we see that the
vectors are always tangent to the curve C so that
F · dr = |F||dr| = Fdr. Now |F| =

√
x2 + y2 = 1

such that

∮
C
F · dr = F

∮
C
dr = 2π,

since
∮
C dr is just the circumference of the circle.

Let's also do it by direct computation. We can
parametrize the circle by r(t) = cos t̂i+sin t̂j+0k̂
such that

dr =
(
− sin t̂i+ cos t̂j

)
dt

and
F = − sin t̂i+ cos t̂j.

You might want to check that this parametrization indeed satis�es the equation for a unit circle, x2+y2 =
1. We get

∮
C
F · dr =

∫ 2π

0

(
sin2 t+ cos2 t

)
dt = 2π.

2.2 Example

Let us now �nd line integral of F = r̂/r2 around a unit circle centered at the origin C going counter
clockwise. This is a very important �eld for our purposes since it has the same mathematical form as
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Figure 3

the �eld from a point charge. To accomplish this in Cartesian coordinates we need to convert by using
the relations r2 = x2 + y2 + z2 and

r =
r

r
=

x̂i+ ŷj+ zk̂√
x2 + y2 + z2

such that

F =
x̂i+ ŷj+ zk̂

(x2 + y2 + z2)
3
2

.

Now this �eld is only dependent of r so we might as well orient our coordinate axes such that our curve
C lies in the xy-plane. We can then use the same parametrization as in the previous example. This gives

F =
cos t̂i+ sin t̂j

(cos2 t+ sin2 t)
3
2

= cos t̂i+ sin t̂j

such that

∮
C
F · dr =

∫ 2π

0

(− cos t sin t+ sin t cos t) dt = 0.

In this case it is however easier and more natural to use a spherical polar coordinate system. In this
system the �eld along the circle C where r = 1 is just F = r̂ and by letting circle reside in the xy-plane,
such that we don't have to worry about φ, a parametrization is obtained by letting t = θ for 0 ≤ θ ≤ 2π.
Furthermore since r is constant, dr is zero

dr = drr̂+ rdθθ̂ = 0r̂+ dθθ̂

such that

∮
F · dr =

∫ 2π

0

0dθ = 0

In fact it turns out that the line integral over this �eld is zero for any closed curve since

∫
C
F · dr =

∫ rb

ra

1

r2
r̂ ·
(
drr̂+ rdθθ̂ + r sin θdφφ̂

)
=

∫ rb

ra

1

r2
dr = −1

r

∣∣rb
ra

=

(
1

rb
− 1

ra

)
= 0

when ra = rb. Note the importance of this result. It says that the work around any closed loop in an
electric �eld from a point charge is zero. We'll get back to it later.
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Figure 4: The de�nition of curl is related to a line integral over a closed loop.

3 Curl of a vector �eld

We earlier found that the we can think of the line integral along a curve C of a vector �eld F as measuring
how much F is going in the same direction of C. If we have a closed loop like the circle in the above
examples this means that we can then think of the line integral of measuring how much the �eld F goes
in a circle C, or rather how much F is circulating around C1.

Suppose now that we wanted a measure how much the �eld F is 'circulating' at a point r (�gure 4). One
way to do this is to take a closed curve C with r as it's center and evaluate the integral

∮
C F · dr with

the curve C getting smaller and smaller. However since
∮
C F · dr→ 0 when the curve shrinks to zero we

divide by the area A enclosed by the curve and de�ne the curl at a point r and in the direction of n̂ to
have the value

Curl F · n̂ = lim
A→0

∮
C F · dr
|A|

(1)

where n̂ is the unit normal to the planar area enclosed by C. We get the curl in any direction by varying
the direction of n̂ (�gure 4. This is then our measure of circulation or rotation of a vector �eld F around
a point r. If we think of F as the velocity �eld of a �uid and place a paddle wheel at a point with curl,
it will rotate. Because of the directionality and magnitude the curl of F is itself a vector �eld.

4 Computation of Curl

If you found the de�nition of curl in equation 1 complicated, do not worry. The point was that the curl
had something to do with 'circulation' or 'rotation' of a vector �eld and is related to closed loop integrals.
If you have this intuition you'll be �ne. This de�nition (equation 1) is not very handy for computing
either. Luckily it can be shown that in Cartesian coordinates

Curl F =

(
∂Fz
∂y
− ∂Fy

∂z

)
î+

(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ+

(
∂Fy
∂x
− ∂Fx

∂y

)
k̂ (2)

And many just take this as the de�nition of curl. As complicated as this formula might seem, this is an
improvement since this is actually a cross product with the del-operator ∇ = ∂

∂x î+
∂
∂y ĵ+

∂
∂z k̂ which can

conveniently be expressed as

1In �uid dynamics where F often represents the velocity in a �uid, the integral around such a closed loop is actually

called the circulation around C.
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Figure 5: The curl in the �eld at neighbouring points cancel each other.

Curl F = ∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ .

5 Stokes's Theorem

Looking back at the de�nition of curl in equation 1 it shouldn't be too surprising that there is a connection
between the line integral of a closed loop and the curl of a vector �eld. This connection is encapsulated
in Stokes Theorem which states that

∮
C
F · dr =

∫
S
∇× F · dA, (3)

where S is any surface bounded by the closed curve C and dA = n̂dA is the in�nitesimal area vector
perpendicular at any point to S (�gure 6). The orientation of n̂ and C is governed by the right had rule2.
In words this theorem states that the line integral of a vector �eld F around a closed loop is equal to the
surface integral of the curl of F on any surface bounded by the curve C.

Some intuition on why Stokes' theorem is true can be gained by considering the diagram in Figure 5.
From the de�nition of curl we saw that it is really nothing but line integrals of small loops. If we cover
an entire surface with the curve C as it's boundary with many such small loops we see that neighboring
contributions will have a tendency to cancel each other so that if we sum their contributions we get
nothing but the entire integral around C. This is the essence of the theorem and the idea behind a formal
proof.

5.1 Example

Consider the �eld of Example 2.1 F = −ŷi+ x̂j . Let's compute the same line integral around the unit
circle C in the xy-plane, but now by using Stokes' Theorem. Even tough any surface enclosed by C would
do, we chose the easiest one, namely the portion of the xy-plane enclosed by C. First we �nd the curl of
F (equation 2).

∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

−y x 0

∣∣∣∣∣∣ = 2k̂.

2If your index �nger points in the direction of C and your ring �nger points towards the surface S then your thumb will

indicate the direction of n̂. See Figure 6.
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Figure 6: Stokes' Theorem can be used for any surface S who's boundary is the curve C.

The unit vector normal to the xy-plane is k̂ so that dA = k̂dA. Now applying Stokes Theorem

∮
C
F · dr =

∫
S
∇× F · dA =

∫
S
2k̂ · k̂dA = 2

∫
S
dA = 2π

where
∫
S dA is the area of the unit disk S.

5.2 Example

The radial �eld of Example 2.2 F = r̂/r2 has no obvious rotation so we should expect that the curl is
zero. You could check this by computing ∇ × F directly but it actually follows from Stokes Theorem.
We did show in Example 2.2 that

∮
C F · dr = 0 for any closed curve C. By Stokes' it then follows that

∮
C
F · dr =

∫
S

∇× F · dA = 0

for any surface S, but this can only be true if

∇× F = 0

.

6 Fields with ∇× F = 0

When there is no curl in the �eld it follows from Stokes Theorem that for any closed curve C

∮
C
F · dr = 0.

This result is in itself important. For a force �eld it means that the work done, and thus the change in
kinetic energy, is the same for any closed loop. Exploring this a little further, let's now imagine that the
curve C consists of two curves C1 and C2 connecting two points P1 and P2 as in Figure 7. This means
that

∮
C
F · dr =

∫
C2

F · dr−
∫
C2

F · dr,

such that when a vector �eld has zero curl
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∫
C1

F · dr =

∫
C2

F · dr

for any two curves C1 and C2. This is called path independence. Considering a force �eld again, this
means that the work done in taking any path between two points will necessarily be the same. You might
have encountered such �elds before in mechanics. They are called conservative because they conserve
energy. As it turns out such �eld can always be written as the gradient of some scalar function φ called
the potential such that F = ∇φ. I'll leave it up to you to show that ∇×∇φ = 0.

7 Electromagnetism and Curl

Like for divergence the concept of curl is also important in electromagnetic theory. We showed in an
example that ∇ × F = 0 for a r̂

r2 �eld and since every electrostatic �eld is a superposition of �elds on
this form this result carries over to electric �eld E.

∇×E = 0

so that by Stokes Theorem

∮
C
E · dr = 0

for any closed curve C. So electrostatic �elds have are irrotational and therefore conservative. However,
we'll see that when we have changing magnetic �elds in space, this induces curl in the electric �eld. This
law is called Faraday's law

∇×E = −∂B
∂t
,

and is the basis for how dynamo's work and therefore for our entire electricity based society. We'll also
meet Ampere's law which states that

∇×B = µ0J+ µ0ε0
∂E

∂t

where J is the current density at the point in question. This law is telling us that curl, or rotation, in
the magnetic �eld are created by moving charges (currents) or changing electric �elds. Notice the the
fact that changing electric �eld induces curl in the electric �eld and vice versa, so that if there are no
magnetic �elds to begin with we can actually induce one by a varying electric �eld. Now the magnetic
�eld will itself be changing and in turn induce an electric �eld. Repeat the argument and you'll �nd that
this process is self sustaining and as we'll discover this is the secret behind the nature of electromagnetic
waves.
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Figure 7: Irrotational �elds are path independent, meaning that any line integral of the �eld connecting two

points give exactly the same value.
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